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Towards the development of simpli"ed analysis methods for the vibrational
power in built-up plate structures, a circular can upon an in"nite recipient plate is
considered. The primary aspect considered is the role of the moments at the upper
and lower interfaces, with respect to both the input and transmitted power. Where
the thickness of the cans top-plate is at least twice that of the side-wall, the
moments are shown to have limited in#uence and, within &&engineering accuracy'', it
is suggested they can be ignored in an analysis. This greatly simpli"es the modelling
of the system. Moreover, it is also shown that where the side-walls are thick
compared to the top-plate and, accordingly, the rotational sti!ness at the upper
interface high, the in#uence of the moments can, and most simply, be accounted for
by merely imposing a guided boundary condition upon the top-plate. A substantial
simpli"cation results for the modelling of the system and the analysis. Further, it is
found that for typical dimensions, there is an extended frequency range over which
the response of the side-walls is either mass or sti!ness controlled. Thence, it
follows that the input and transfer mobilities of the side-walls are comparable to
each other, leading to further reduction of the models.

( 1999 Academic Press
1. INTRODUCTION

For a complete analysis of vibration transmission in built-up plate structures, all
wave motion transmitted across all boundaries has to be taken into account. Since
this transmission process often involves both translational and rotational
components and several boundaries, the analysis is frequently multi-dimensional
and the demands for a solution inevitably high. Problems relating to the vibration
transmission in built-up place structures are therefore usually approached using
numerical techniques such as "nite element analysis. Although these techniques are
purported to be a method of analysis, the inherent drawback is that the physical
behaviour of the system is not revealed. Any forthcoming solution is therefore
resent address: Institut fuK r Technische Akustik, Technische UniverstaK t Berlin, 105787 Berlin,
ermany.
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directly relevant only to the particular structure studied and cannot be immediately
extended to aid the analysis of another. With respect to design this necessitates
therefore many repeated calculations. As a tool, numerical methods can therefore
be both laborious and capricious in use.

A more de"ned approach is to attempt an analytical formulation. Commonly
this is achieved by "rst sub-dividing the system into those elementary structural
components for which expressions for the structural characteristic (i.e., mobility or
impedance) can be obtained, and then recombining via continuity and force
equilibrium these elementary components to reform the whole structure [1]. Whilst
if all degrees of freedom are accounted for, at all boundaries, the approach does not
lead away from a multi-dimensional analysis, the inherent advantage is that it does
lead to an understanding of the physical behaviour of the system. With this insight
it is often possible to determine a dominant behaviour. Identi"cation of a dominant
behaviour permits the multi-dimensional analysis to be reduced and, if the
reductions are signi"cant, a simpli"ed model is procured. This reduced model can
then be used as the basis for an engineering design tool.

With such an approach in mind, the notionally simple, built-up structure of
a transversally force excited box upon an in"nite recipient plate is considered. It is
noted that herein a distinction is made between box-like and column-like
superstructures whence the height of the box is less than its cross-sectional
dimensions whereas the opposite is assumed for a column. This only implies,
however, that the lateral motion in the former case is essentially governed by shear
or the global interface bending of the recipient. The primary hypothesis addressed
is then that the power transmitted is dominated by that associated with the
transverse force (F), at both the upper and lower interfaces of the side-walls, such
that the moment induced power at these interfaces (M) can be neglected for a wide,
practically important frequency range.

2. BOX UPON INFINITE PLATE

Focusing on the e$cacy of moment and force transmission, it is argued that
a can (circular-like box) can be substituted for a rectangular-like box. In contrast to
a rectangular-like box, no vertical side-wall discontinuities are present in the
circular case. Although this will ensure a di!erent set of eigenfrequencies it is argued
that with respect to the hypothesis this will not obscure the salient physics of the
system. This is so because the relative contributions of moment and force can be
expected to be primarily determined by the boundary conditions at the upper and
lower interfaces of the side-walls. Moreover, since the details of a structures
dynamic response are known to be sensitive to all involved parameters, i.e.,
material, dimensions, boundary conditions and excitation, it can be argued that
where all the details are not known, i.e., at the design stage, a theoretical model
merely has to &&capture'' the main trends of the response that are relevant and that
this is, therefore, all that needs to be modelled. Accepting such reasoning, the
introduction of a circular can as opposed to a rectangular-like box is then
motivated in that it simpli"es the mathematical treatment. Firstly, it reduces the
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system such that only three structural elements are involved; a circular top-plate,
a cylindrical side-wall and an in"nite recipient plate, see Figure 1. Secondly, for
each of these &&circular'' elements, the line mobility concept can be invoked via
a Fourier series expansion in the spatial domain [2], which facilitates the
re-assembling of the three sub-structures.

For a spatial dependence of form cos(nh) and including both moment and force,
the complex power integrated around a circular interface is given by

Q"n[vF#wM]. (1)

A list of symbols is given in Appendix C.
With reference to Figure 1 and assuming that there is no cross-coupling

(translational to rotational) between the upper and lower interfaces of the
side-walls, application of continuity gives the power at the input position and the
upper and lower boundaries as
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respectively.
Figure 1. The three structural components of the circular can on a recipient system.
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Via the application of a force balance, the forces and moments at the cylinder
ends are obtained from
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To assess the in#uence of the moment and thereby test the hypothesis,
calculations for the complete model can be compared with those from a reduced
model in which all moment contributions are neglected.

For the reduced model the respective powers are
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with the forces obtained from
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For the reduced model, only a limited amount of mobility data is therefore needed.
Moreover, since only those mobilities which remain, >00

Fv
, >01

Fv
, >11

Fv
, >22

Fv
, >23

Fv
and

>44
Fv

, can be considered to represent the &&bones'' of the system it is di$cult to
conceive of an approach other than a lumped system analysis through which the
data set can be reduced further, cf. reference [3].

3. MOBILITIES

3.1. TOP PLATE

Employing Love's theory of elasticity [4] and simple harmonic motion, the
mobilities of the top-plate can be obtained following the modal formulation of
Soedel [5].

With a free boundary condition imposed, i.e., M
r
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computer-based search routines implemented to "nd the eigenfrequencies, the line
mobilities relating force and moment to velocity become
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and,
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(11)

for all mode orders except those relating to rigid-body motion. Descriptions for the
various terms can be found in Appendix A.

For the &&piston-like'' translational rigid-body mode (0, 0) the mobilities are
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whilst for the rotational rigid-body mode (0, 1) ,
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Di!erentiating equations (10) and (11) with respect to r gives the mobilities
relating force and moment to rotational velocity as
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and
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These are valid for all (m, n) other than the rotational rigid-body mode for which
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For n"0, a mass-controlled region resulting from equation (12) is obtained
prior to a resonant region. The fundamental resonance is at k

Btop
a"n/2 and

subsequent resonances are located at mn/2. An anti-resonance separates the mass-
and resonant-controlled regions. In the resonant-controlled region the trend is, as
expected, towards the characteristic plate mobility.

Where n"1, a mass-controlled region followed by an anti-resonance and then
a resonant region with trend of the characteristic plate mobility is found. For all
other orders of n an associated rigid-body mode, however, does not exist such that
the behaviour prior to the resonant region is sti!ness controlled, excluding
a fundamental anti-resonance.

The format of the transfer mobility >01
Fv

(from the input force position to the
translational response position at the edge of the plate) can be expected to be
similar to that of>00

Fv
whereby for both n"0 and 1 a mass-controlled region will be

followed by a resonant-controlled region whilst for n'1, a sti!ness-controlled
region will precede the resonant region. For n"0 and 1 an anti-resonance will,
however, not separate the mass- and resonant-controlled regions.

Clearly, when the response vector is rotational, i.e., for>01
Fw

,>11
Fw

and>11
Mw

, a mass-
controlled region can only be expected for n"1. For both >01

Fw
and >11

Fw
, the

rotational response will also mean that in the resonant region the characteristic
trend will exhibit an order of magnitude increase per decade. For>11

Mw
, the addition

of a rotational excitation vector means a characteristic trend of two orders of
magnitude increase per decade can be expected.
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3.2. CYLINDRICAL SIDE-WALL

For an unprejudiced solution of the can dynamics, the mobilities should be
developed for a cylinder that is free at its edges with respect to all of radial, axial
and tangential motion. Such a solution is, however, di$cult to obtain due to the
inherent coupling between all three-degrees of freedom at the boundary. To permit
some simpli"cation, and in view of the distinction between box- and column-like
superstructures, it is suggested that the completely free condition can be modi"ed
to one which is free with respect to both tangential and axial motion but simply
supported with respect to radial motion, see Figure 2(a). Compared with the
completely free condition the simply supported condition does impose a restriction
upon the deformation of the cylinder, see Figure 2(b). Provided the cylinders'
response is small and it is either translational (axial) or rotational (lateral), the
deformation (d) will negligible. For the can, this is argued to be the case provided
any resultant lateral force negligible. In cases where the &&sway'' will become
signi"cant, obviously, the boundary conditions of the cylinder would need to be
modi"ed or a shear beam model introduced.

Assuming therefore simple supports, Loves theory can be employed such that, as
for the developments for the top plate, the work of Soedel can be followed whereby
the mobility relating axial velocity to axial force is obtained as
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whereas the mobility relating tangential rotational velocity to moment is developed
as
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Descriptions for the various terms can be found in Appendix B.
That the cylinder is free of constraint in the axial direction implies that

a rigid-body mode must be included for the n"0 component of >22,23
Fv

,
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Figure 2. Discrepancy introduced for simply supported edge condition (exaggerated).
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The simple supports constrain the cylinder with respect to sway and no
contribution from a rigid-body mode to >22,23

Mw
occurs.

For a cylinder of dimension ¸/a"1 and wall thickness of h
cyl

/a"0)01, the
magnitude of the axial force input mobility >22

Fv
(">33

Fv
) is shown in Figure 3. The

mobility is normalized with respect to that of an in"nite plate of thickness equal to
that of the cylinder wall since for point excitation in the radial direction the
high-frequency behaviour of a cylinder approaches that of an in"nite plate [6]. The
normalized mobility is plotted versus k

Lcyl
a and, to allow comparison with

a top-plate of equal thickness and radius, it is plotted versus k
Btop

a also.
For n"0, a mass-controlled region is followed by an anti-resonance and this is
"rst followed by a beam-controlled resonant region and later by a plate-controlled
resonant region. A similar format is also seen for other values of n though for these,
because there is no associated rigid-body mode, the behaviour prior to the beam
region is sti!ness controlled.

Whilst the transition from beam-to plate-controlled behaviour is known to
occur at the cylinder ring frequency, k

Lcyl
a"1, which, of the cylinders dimensions

only involves the radius, the onset of the beam-controlled region, and thus
essentially of resonant behaviour, is dependent upon all of the dimensions. That the
eigenfrequencies are similarly dependent means that a general modal order cannot
be established in contrast to the top-plate. The frequency of the cylinder's
fundamental and subsequent resonances cannot therefore be generalized. Moreover,
it is seen that for the resonant region the characteristic trend of the mobility has,
similarly, a dependence upon n wherefore this too cannot be generalized.

Analogous to that of >01
Fv

and >00
Fv

for the top-plate, the format of the transfer
mobility >23

Fv
can be expected to be as that for >22

Fv
bar so that for n"0 an

anti-resonance between the mass controlled and beam-like region will not be
exhibited.
Figure 3. >22
vF

for ¸/a"1, h
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/a"0)01. ** n"0; - - - - n"1; ...... n"2; - ) - ) - n"3.
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The magnitude of the moment transfer mobility>23
Mw

is shown in Figure 4. Since
the cylinder does not have a rigid-body mode in rotation, sti!ness-controlled
behaviour followed by "rst beam and then plate-controlled resonant behaviour is
seen for all n. As for the force mobilities, the modal order cannot be generalized
wherefore the only resolved frequency is that of the ring mode. An interesting
feature however is that for n"0 there is a dramatic, almost step-like, transition
from sti!ness to plate-controlled resonant behaviour. Though for other orders of
n the transition is not as sharp, the slope prior to the ring frequency is consistently
steep whereupon even for the case of n"3 an increase of over three orders of
magnitude in the decade [0)1, 1] is apparent. Such behaviour results, uniquely, from
the very high rotational sti!ness between the upper and lower edges of the cylinder
and will therefore not be exhibited in the input moment mobility >22

Mw
. It can

therefore, and to support the hypothesis, be predicted that the transfer of moments
across the cylinder is small for an extended region. Moreover, for a top-plate and
side-wall of equal thickness the ring frequency occurs for k

Btop
a'10 wherefore this

region will extend far beyond the fundamental resonance of the top-plate.

3.3. INFINITE RECIPIENT PLATE

For line excitation of an in"nite plate, a wave approach can be used to establish
the mobilities. Following then the work of Petersson [7] the force input mobility is
given by

>44
Fv

"

iu
8DK2

B

i
g
j
g
k

J
n
(k

B
r)J

n
(k

B
r
0
)!

iCJn(kBr)Yn
(k

B
r
0
)#

2
n
I
n
(k

B
r)K

n
(k

B
r
0
)D

e
g
f
g
h

, (24)



488 R. A. FULFORD AND B. A. T. PETERSSON
and the cross mobility (obtained by di!erentiating once with respect to r) by
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The moment mobility, obtained by application of two opposing forces equidistant
around r

0
followed by a "rst order Talyor expansion, is given by
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For n"0, the mobility follows the characteristic point mobility until
approximately k

Brec
a"1 after which, the mobility has a spatial dependence

because the wavelength becomes small with respect to the annular interface and
a series of minima results. For the other orders of n, and clearly as a consequence of
the force distribution being essentially moment-like, a sti!ness-like slope is
exhibited to k

Brec
a"1. In this region, the magnitude decreases signi"cantly as

n increases indicating that the mobility is dominated by zeroth order excitation.

4. CAN UPON INFINITE PLATE

Using the mobilities established as ingredients, equations (2)}(9) can be
implemented. Consider a can of dimension ¸/a"1, h

cyl
/a"0)01, h

top
/a"0)01

attached to a recipient of dimension h
top

/a"1.s For an excitation force of order
n"0 positioned at r

0
/a"0)5, the active input power, de"ned as

="ReMQN , (27)

is shown in Figure 5 for both the complete model=
com

and the reduced model=
red

.
Normalization is with respect to the power for a point force applied directly to the
sA &&thick'' recipient was initially selected to enable comparisons with previous work [8].



Figure 5. Input power for n"0, h
top

/a"0)01, h
cyl

/a"0)01, h
rec

/a"1, ¸/a"1, r
0
/a"0)5. **

w
com

; - - - - - w
red

.

MOMENT ASSOCIATED POWER 489
recipient plate. It is seen that the power calculated from the reduced model maps
that from the complete for the entire range of Helmholtz numbers considered. This
results because for n"0 the applied force distribution is a uniform ring,
symmetrically positioned upon the top-plate whereupon only translational force
can be imparted into the side-walls.

For n"1, both moments and forces can be transmitted to the side-walls and
discrepancies between the two calculations are introduced, see Figure 6. In the
sti!ness-controlled region (occurring primarily due to the response of the recipient)
the power is seen to be greater for the reduced model than for the complete one.
Both the fundamental and the second resonances occur at a lower Helmholtz
number for the reduced model. The positions of the higher resonances are however
comparable for both models.

Since for the spatial domain the line mobilities have been formulated with
a circular dependence, a Fourier series expansion and then summation of the input
force allows the prominent case of point force excitation to be studied.s The real
and imaginary parts of the input power are shown in Figures 7 and 8 respectively.
For these "gures, the reduced model is seen to mimic the complete model for
Helmholtz numbers to the second resonance. At the second resonance,
discrepancies are however seen such that for the reduced calculation the second
resonance occurs at a lower Helmholtz numbers. Since superposition holds with
sThe only di$culty with this approach is the number of modes required in the series so to attain
convergence of solution. For high Helmholtz numbers, it was found that numbers in excess of 900 and
1500 modes were needed for the top-plate and cylinder respectively. For the salient physics of the
system, the details of the higher resonances are however of limited signi"cance and rather than
including a high number of modes in the analysis, the upper Helmholtz number of interest can instead
be reduced from k

Brec
a"10 to k

Brec
a"1.
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respect to n, comparisons of Figure 7 with Figures 5 and 6 reveal, respectively, that
the fundamental resonance is, essentially, controlled by the n"0 excitation order
and the second by the n"1 order. It is suggested therefore that the "rst resonance
is controlled only by the force exerted upon the side-walls whilst the second
resonance is controlled by both the moment and the force. That none of the higher
resonances match for both models, reveals that these too are controlled by both
force and moment.
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Concentrating upon the second resonance, it can be determined from the
substructure mobilities that it occurs where the cylinder is sti!ness controlled, i.e.,
for Helmholtz number k

Btop
a(4"k

Lcyl
a(0)05 and where the receiver can be

likened to a point excited in"nite plate, i.e., k
Brec

a(1. Since for these conditions
neither the cylinder nor the recipient exhibits resonance-controlled behaviour nor
too, will the mobilities be conjugated, it follows that the resonance is determined
only by the dimensions of the top-plate and the boundary conditions imposed upon
it.

4.1. INFLUENCE OF UPPER BOUNDARY CONDITION

To investigate the in#uence of the upper boundary condition, the thickness of the
top-plate relative to the side-walls can be altered. For h

cyl
/a"0)1 and

h
top

/a"0)001, Figure 9 shows the real part of the input power for point excitation.
Whilst a comparison of Figures 7 and 9 reveals that for both cases the second
resonance occurs at a lower Helmholtz number for the reduced model than for the
complete model, the discrepancy is largest where the thickness of the side-walls is
greater than that of the top-plate, i.e., Figure 9.

For the other extreme of boundary conditions, i.e., a thick top-plate and thin
cylinder walls, see Figure 10, the complete and reduced models are seen to be
comparable for the whole, extended range considered.

Where the top-plate is thicker than the side-walls, the reduced model is therefore
an accurate representative of the complete whilst where the cylinder walls are of
comparable or of greater thickness, discrepancies between the two models occur
above the fundamental resonance.
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To explain this sensitivity to the top-plate/side-wall interface the following
argument applies. For a thick top-plate, the rotation at the interface is dictated by
the plate characteristics and the restoring moments from the thin side-walls can be
neglected. This means that the reduced model is an adequate representation of the
complete. However, where, the top-plate is thin and the walls thick, the rotation is
governed by the latter wherefore, for the reduced model, in which the restoring



Figure 11. Guided top-plate "tted inside the cylinder.
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moments are neglected, those resonances in#uenced by moments occur at lower
Helmholtz numbers than those obtained with the complete model.

It follows that in order to account for such an e!ect, a rotational constraint can
be introduced &&arti"cially'' into the reduced model. Whilst retaining the simpli"ed
formulation this can be achieved by considering the boundary condition of the
top-plate to be guided instead of being free along the edge, see Figure 11. Further
compatibility is also achieved by assuming that the top-plate dimension is such that
it "ts inside the cylinder walls. It is appropriate to introduce rotational sti!ness for
all orders of n other than n"0. The exception being so because for n"0 as seen in
Figure 5, the cylinder is not excited with respect to rotation and the rotational
sti!ness has therefore no in#uence. For n"0, the free edge condition should
therefore be retained. Also, the two rigid-body modes have to be maintained since
the guided condition is relative to the cylinder walls and not global.

For the case of h
cyl

/a"0)1, Figure 12(a) is produced. The compatibility of the
reduced and complete models is seen to be restored, cf. Figure 9. Where di!erences
in amplitude are seen, the limited frequency resolution o!ers an explanation,
whereby the calculation omits the &&absolute position'' of the resonance. This is
demonstrated in Figure 12(b) for which the upper range of Figure 12(a) is shown
recalculated with a much re"ned frequency resolution. Not only is the
compatibility of the resonance peaks improved but moreover, considering the "rst
four, there is no consistency between over or under-estimation. Therefore this
means that &&care'' has to be taken when determining the maximum of the resonance
peaks in a narrow-band calculation. In frequency-averaged applications, for
example third octave band, this is clearly less critical.

Application of the guided top-plate model to the case where both h
top

/a and
h
cyl

/a"0)01 is, however, less successful, see Figure 13. It is seen that those
resonances for which the moment is in#uential are at higher Helmholtz number for
the guided model,=

gui
, than for the complete model.This indicates therefore that

the guided model is sti!er than the complete model. Moreover, because the guided
model can be considered to represent a limiting case, its applicability can be
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expected to decrease as the ratio of cylinder thickness to top-plate thickness
decreases. It is shown therefore that where the top-plate and side-wall are of equal
thickness is the &&worst-case scenario''. Moreover, understanding the signi"cance of
the top-plate and side-wall thickness poses an investigation of the criterion for the
distinction of thick and thin top-plates and side-walls.
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To compare with Figures 7 and 10, results are shown in Figure 14 for cases where
h
cyl

/h
top

is 1)5, 2, and 2)5 respectively. With respect to the resonance frequencies,
discrepancies between the complete and reduced model are thereby deemed
negligible where the ratio is 2 or greater.

To compare with Figures 9 and 12, results are also shown for h
top

/h
cyl
"1)5, 2,

and 2)5, see Figure 15. Again, the discrepancies between the complete and reduced
model can be considered negligible where the ratio is 2 or greater.

All the results suggest therefore a &rule-of-thumb' whence a structure can be
considered &thick' if its thickness is twice that of another.

4.2. INFLUENCE OF LOWER BOUNDARY CONDITION

As for the upper boundary, the in#uence of the lower boundary condition can be
assessed by varying the relative thickness of the two coupled structures. Hence,
assuming that the least-favourable condition is where the recipient plate is of equal
thickness to the side-walls, models are considered in which h

rec
/a"h

cyl
/a"0)01.

The input power is calculated where the top-plate has dimension h
top

/a"0)02, see
Figure 16, and where h

top
/a"0)005, see Figure 17. The complete and reduced

calculations are seen to be comparable for both situations. Clearly, therefore, the
in#uence of the moment at the lower boundary is negligible.

4.3. INFLUENCE OF DIMENSIONS

To investigate how the two reduced models compare with the complete model
for changes of relationship between radius and length, two systems of &&extreme''
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conditions were considered, ¸/a"5 and 0)2. For point excitation at r
0
/a"0)5 and

with h
top

/a"0)01 and h
cyl

/a"0)02 the resultant calculation of the input power is
shown in Figures 18 and 19. For both cases,=

gui
is an accurate representation of

=
com

.
For extreme radii, the condition of h

top
/a"0)004 and h

cyl
/a"0)002 is also

considered, see Figures 20 and 21. Again=
red

and=
com

are seen to be comparable
over the whole range.

Physically, these comparisons demonstrate the weak interplay between the
top-plate thickness and radius with respect to the bending sti!ness and in#uence of
the rotational constraints at the boundary.

4.4. POWER TRANSMISSION AT LOWER INTERFACE

In addition to the input power, the power transmitted through a built-up
structure and into its surroundings is also of interest for engineering design. For the
cylindrical can, this is represented by the power at the lower interface. Since within
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the side-walls any conversion from force-induced power to moment-induced power
can be expected to be small, similar "ndings with respect to compatibility of the
complete and reduced models can be expected to hold for both the power at the
input and at the lower interface. As an illustration, the power at the lower interface
is shown in Figure 22 for ¸/a"1 and with both h

top
/a and h

cyl
/a"0)001. The

discrepancies between the reduced and complete models are indeed seen to be
comparable to those of the corresponding input power plots, i.e., compare Figure
22 with 13. The same is true when the recipient plate is of thickness equal to that of
the side-walls, see Figures 23 and compare with Figure 16.

4.5. INFLUENCE OF FORCE LOCATION

In addition to the system dimensions, the power will also be in#uenced by the
eccentricity of the force. A force at the centre for example, constituents a symmetric
loading such that there will be no global moment excitation of the cylinder and
=

red
can be expected to be comparable to =

com
for all conditions.



Figure 16. Input power for point excitation, h
top

/a"0)02, h
cyl

/a"0)01, h
rec

/a"0)01, ¸/a"1,
r
0
/a"0)5. ** w

com
; - - - - - w

red
.

Figure 17. Input power for point excitation, h
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With ¸/a"1 and both h
top

/a and h
cyl

/a"0)01, the power at the lower interface is
considered for point forces positioned at r

0
/a"0)3 and 0)9, see Figures 24 and 25.

The discrepancies between the reduced model and the complete are similar for both
"gures and are comparable to the case of r

0
/a"0)5, i.e., Figure 22.

It is interesting to observe that for r
0
/a"0)9 sharp drops in the power occurs. At

these frequencies, the force position can be shown to almost coincide with a nodal
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line whereupon the system is weakly excited. The physics of these minima is
therefore not unique to the condition of a force close to the edge and for other force
positions minima can likewise be expected. At higher frequencies, the in#uence of
dissipation, however, is such that they are less pronounced, see Figure 24 at
k
Brec

a+0)8.
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4.6. FURTHER SIMPLIFICATION OF MODEL

From Figure 3, it is known, for the typical dimensions considered, that over
much of the Helmholtz number range, the cylinder acts, with respect to force
excitation, as either a mass (n"0) or as a sti!ness (n'0). Where it is mass-like, the
point and transfer mobilities will clearly be equal. Under the condition of &&long''
wavelengths, approximations can also be found when its behaviour is sti!ness-like.
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Assuming these two conditions and that the recipient is &&rigid'' compared with the
cylinder (>22

Fv
'>44

Fv
) and so acts as a point-excited structure, permits the reduced

model to be simpli"ed.
The active, transmitted power at the input position becomes
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ReG>00
Fv

#

>01
Fv
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Fv
(>11#>44)H DF

0
D2 , (28)
Fv Fv



Figure 24. Power at lower interface for point force, h
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Figure 25. Power at lower interface for point force, h
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and at the lower interface simply,

="

1
2
Re M>44

Fv
N

D>01
Fv

D2
D>11

Fv
D2

DF
0
D2 . (29)

A comparison of the results forthcoming from these expressions with those from the
reduced model allows an examination of the cylinders in#uence on the power. With
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both h
top

/a and h
cyl

/a"0)01 and ¸/a"1, a calculation of the power at the lower
interface is thus shown in Figures 26 and 27 for the cases of, compared to the length,
a large and a small radius respectively.

Whilst for both cases, it appears that the simpli"ed calculation=
sim

is a useful
approximation of the reduced model this is seen to be more so for a large radius
than for a small radius. Clearly, this can be expected since for the limiting case of
Figure 27. Power at lower interface for point force, h
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Figure 26. Power at lower interface for point force, h
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aP0, the system will become rod-like and accordingly dominated by the cylinder
behaviour, cf. reference [9].

Finally, it is noteworthy that the denominator of equation (29) is the input
mobility at the edge of the top-plate. The maxima seen in the transmitted power
must therefore coexist with the minima, i.e., anti-resonances, of this mobility. Since
the losses of the can have limited in#uenced upon these minima it can be noted that
the maxima of the transmitted power are controlled by the losses of the recipient
only. Moreover, and in contrast to a calculation of the input power (Figures 12(a,
b)), it means that less &&care'' need be taken of the frequency resolution when
performing a narrow-band calculation of the transmitted power.

5. CONCLUDING REMARKS

Including both translational and rotational degrees of freedom a complete
analytical model of a circular can upon an in"nite recipient-plate has been
developed and, with respect to both the input and transmitted power, used to study
the role played by the moments as the upper and lower interfaces. For all cases of
typical dimension, Helmholtz number range and force position considered, it has
been shown that

* where the thickness of the cans top-plate is &&thin'' compared with that of the
side-wall the moments have limited in#uence and, within &&engineering
accuracy'', can be ignored in an analysis.

* If the side-wall thickness is equal to that of the top-plate the rotational sti!ness
of the system is signi"cant and the resultant moment has an in#uence upon
frequencies above the fundamental system resonance.

* Rotational sti!ness can be introduced &&arti"cially'' by imposing, with respect to
rotation, a blocked boundary condition on the top-plate. Where the side-walls
are &&thick'' compared with the top-plate this takes into account the role of the
&&true'' moment coupling.

* The condition of &&thin/thick'' appears to be such that a structure can be
considered thick compared with another if (and if both are the same material)
the thickness ratio is two or greater.

* With respect to a simpli"ed analysis the most unfavourable condition is where
the thickness of the side-walls is equal to the top-plate. If for this condition the
moment coupling is ignored, the system is too compliant. Conversely, if the
rotational sti!ness is introduced &&arti"cially'' the system, it is too sti!.

* For an extended frequency range, the side-walls of the can are either mass or
sti!ness controlled whereupon it can be assumed that the transfer mobility from
the upper and lower interface of the side-walls is comparable to the input
mobility. This permits the development of simple expressions for both the input
and transmitted power at the lower interface.

* From these expressions, it appears that the maximum power is input into the
can system at the anti-resonances of the top-plate edge mobility.

* For the model, all the above remain so, where the ratio of can radius to height is
within the limits of 0)2}5.
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APPENDIX A: DETAILS OF THE TOP-PLATE MOBILITIES

Assuming a free edge for the top-plate, the boundary conditions needed to be
satis"ed at r"a are
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Solving this set of equations gives the modal loci j
mn

of the top-plate. The natural
frequencies are related to the modal loci via
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whilst for a forced response the modal participation factors are obtained from
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APPENDIX B: DETAILS OF THE CYLINDER MOBILITIES

Assuming simply supported edges for the cylinder, the following boundary
conditions have to be satis"ed:
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Accordingly, the eigenfrequencies can be found to be given by
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for which K is the so-called membrane sti!ness,
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The fact that for each mode (m, n) there are three frequencies stems from the three
displacement components possible in the cylinder, i.e., one #exural and two planar.

From the natural frequency solutions, the corresponding modes of vibration are
found to be
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APPENDIX C: SYMBOLS AND NOTATION

A function
B function
D #exural sti!ness
E Young's modulus
F force
I modi"ed Bessel function
J Bessel function
K modi"ed Bessel function
K constant
K membrane sti!ness
¸ length of cylinder
M moment
N force per unit length
Q complex power
¹ moment
; displacement
= transmitted power
> mobility
> Neumann function
a radius
h thickness
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i imaginary unit
r polar co-ordinate
q force
t time
l translational velocity
w rotational velocity
x length
d Dirac's delta function
d small distance
g material loss factor
j eigenfrequency
l Poissons' ratio
h polar co-ordinate
o density
u angular frequency
t modal participation factor
p stress
f complex variable

Indices
B #exural
¸ longitudinal
F force
M moment
com &&complete''
cyl &&cylinder''
gui &&guided''
m order
m location
n order
n location
red &&reduced''
sim &&simpli"ed''
l translational velocity
w rotational velocity
0 excitation location

Notation
. time di!erentiation
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